Bemerkung 1 (Hinreichende Bedingung für die Gültigkeit)

Es seien Zufallsvariablen X_1, X_2, \ldots, X_n und A_1, A_2, \ldots, A_n mit folgenden Eigenschaften gegeben:

- (V1) X_1, \ldots, X_n sind stochastisch unabhängig
- (V2) X_i sind Bernoulli-verteilt für $i=1,\ldots,n$ mit dem Parameter p (also $P(X_i=1)=p$, $P(X_i=0)=1-p$ für $i=1,\ldots,n$).
- (V3) Unter der Bedingung $X_i = 0$ nimmt A_i den Wert 0 mit Wahrscheinlichkeit 1 an, für i = 1, ..., n. Formal: $P(A_i = 0 | X_i = 0) = 1$ für i = 1, ..., n.
- (V4) Unter der Bedingung $X_i = 1$ nimmt A_i die Werte b_1, b_2, \ldots, b_m jeweils mit Wahrscheinlichkeit p_1, p_2, \ldots, p_m an, wobei $b_j \neq 0$ für alle $j = 1, \ldots, m$, und den Wert 0 mit Wahrscheinlichkeit $1 (p_1 + \cdots + p_m) \geq 0$ für $i = 1, \ldots, n$.

Sei zur Abkürzung
$$X:=X_1+\cdots+X_n$$
 und $S_i=X-X_i=\sum\limits_{j=1,j\neq i}^nX_j$ für $i=1,\ldots,n$

Behauptung:

- 1. X ist binomialverteilt mit den Parametern n und p. S_i ist binomialverteilt mit den Parametern n-1 und p, für alle $i=1,\ldots,n$
- 2. Für i = 1, ..., n gilt $E(A_i|X_i = 1) = b_1p_1 + b_2p_2 + \cdots + b_mp_m$
- 3. Wenn für i = 1, ..., n die Zufallsvariablen A_i und S_i stochastisch unabhängig sind, dann gilt für alle $x \in \{0, ..., n\}$ die Gleichung

$$E(\sum_{i=1}^{n} A_i | X = x) = x \cdot (b_1 p_1 + b_2 p_2 + \dots + b_m p_m)$$

Beweis:

- 1. gilt wegen (V1),(V2) (bekanntlich!)
- 2. folgt aus der Formel für Erwartungswerte und (V4).
- 3. Es ist im Folgenden immer zu beachten, dass alle $b_j \neq 0$ vorausgesetzt sind und A_i wegen (V3) nur dann einen Wert b_j annehmen kann, wenn X_i den Wert 1 annimmt.

Für jedes i = 1, ..., n und jedes $b \in \{b_1, ..., b_m\}$ gilt:

$$P(A_i = b \mid X = x) = \frac{P(A_i = b \text{ und } X = x)}{P(X = x)}$$

$$\text{weil } b \neq 0 = \frac{P(A_i = b \text{ und } X_i = 1 \text{ und } X = x)}{P(X = x)}$$

$$\text{Definition von } S_i = \frac{P(A_i = b \text{ und } X_i = 1 \text{ und } S_i = x - 1)}{P(X = x)}$$

$$\text{weil } b \neq 0 = \frac{P(A_i = b \text{ und } S_i = x - 1)}{P(X = x)}$$

Dieser Ausdruck wird nun mit $P(S_i = x - 1)$ erweitert. Damit folgt dann

$$P(A_i = b | X = x) = \frac{P(A_i = b \text{ und } S_i = x - 1)}{P(S_i = x - 1)} \cdot \frac{P(S_i = x - 1)}{P(X = x)}$$

$$\stackrel{\text{mit } 1.}{=} P(A_i = b | S_i = x - 1) \cdot \frac{\binom{n-1}{x-1} p^{x-1} (1 - p)^{(n-1) - (x-1)}}{\binom{n}{x} p^x (1 - p)^{n-x}}$$

$$= P(A_i = b | S_i = x - 1) \cdot \frac{x}{np}$$

Aus dieser Gleichung folgt

$$E(A_i|X=x) = \sum_{j=1}^{m} b_j \cdot P(A_i = b_j|X=x)$$

$$\stackrel{\text{obige Gleichung}}{=} \sum_{j=1}^{m} b_j \cdot P(A_i = b_j|S_i = x-1) \cdot \frac{x}{np}$$

$$= \frac{x}{np} \cdot \sum_{j=1}^{m} b_j \cdot P(A_i = b_j|S_i = x-1)$$

Nun wird aber ja vorausgesetzt, dass S_i und A_i jeweils stoschastisch unabhängig voneinander sind, deshalb kann man in der Gleichung die Bedingung $S_i=x-1$ jeweils weglassen und erhält

$$E(A_i|X = x) = \frac{x}{np} \sum_{j=1}^{m} b_j P(A_i = b_j)$$

Durch Aufsummieren über i von 1 bis n erhält man, weil wegen der Verteilungsannahmen die rechte Seite nicht von i abhängt, den folgenden Ausdruck. Bei diesem Ausdruck ist zu beachten, dass man dort das i einfach durch 1 ersetzen konnte:

$$E(\sum_{i=1}^{n} A_i | X = x) = \sum_{i=1}^{n} E(A_i | X = x)$$

$$= n \cdot \frac{x}{np} \sum_{j=1}^{m} b_j P(A_1 = b_j)$$

$$= x \cdot \sum_{j=1}^{m} b_j \frac{P(A_1 = b_j)}{p}$$

$$= x \cdot \sum_{j=1}^{m} b_j \frac{P(A_1 = b_j)}{P(X_1 = 1)}$$

$$= x \cdot \sum_{j=1}^{m} b_j \frac{P(A_1 = b_j)}{P(X_1 = 1)}$$

denn A_1 nimmt positive Werte nur für $X_1 = 1$ an. Damit folgt dann

$$E(\sum_{i=1}^{n} A_i | X = x) = x \cdot \sum_{j=1}^{m} b_j P(A_1 = b_j | X_1 = 1)$$

$$\stackrel{\text{(V4)}}{=} x \cdot (b_1 p_1 + \dots + b_m p_m)$$